الشحنة و المادة Charge and Matter

مثال : مقارنة بين القوة الكهربائية و قوة التجاذب الكتلى.

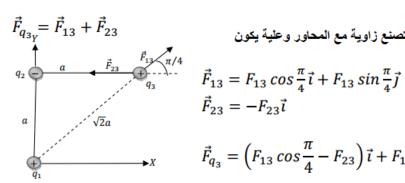
يفصل بين إلكترون و بروتون ذرة الهيدروجين مسافة 10^{-11} m أوجد مقدار القوة الكهربائية و قوة التحاذب الكتلى بين الإلكترون و البروتون، حيث:

$$m_e = 9.11 \times 10^{-31} \text{kg}; \qquad m_p = 1.67 \times 10^{-27} \text{kg}$$

من قانون كولوم نحد:

$$F_e = k \frac{e^2}{r^2} = \left(9 \times 10^9 \frac{Nm^2}{C^2}\right) \frac{(1.60 \times 10^{-19} C)^2}{(5.3 \times 10^{-11} m)^2} = 0.82 \times 10^{-7} N$$

وباستعمال قانون نيوتن للجذب نحد ان:


$$\begin{split} F_g &= G \frac{m_1 m_2}{r^2} = \left(6.7 \times 10^{-11} \frac{N m^2}{k \text{g}^2}\right) \frac{(9.11 \times 10^{-31} k \text{g})(1.67 \times 10^{-27} k \text{g})}{(5.3 \times 10^{-11} m)^2} \\ &= 3.62 \times 10^{-47} N \end{split}$$

$$rac{F_e}{F_g} = 2.26 imes 10^{39}$$
:النسبة بين القوتين

ان قوة التجاذب الكتلى او المادى هملة بالمقارنة بالقوة الكهرواستاتيكية

مثال

 $q_1 = q_3 = 5.0 \mu C$ وضعت ثلاث شحنات نقطية عند أركان مثلث قائم و متساوي الساقين $q_2=-2.0\mu C$ وجد محصلة القوة المبذولة عند $q_2=-2.0\mu C$ q_2 و q_3 القوة المحصلة على q_3 هي المجموع الشعاعي للقوى الناتجة عن q_3

نحلل اي قوة تصنع زاوية مع المحاور وعلية يكون

$$\vec{F}_{13} = F_{13} \cos \frac{\pi}{4} \vec{i} + F_{13} \sin \frac{\pi}{4} \vec{j}$$

$$\vec{F}_{23} = -F_{23} \vec{i}$$

$$\vec{F}_{q_3} = \left(F_{13}\cos\frac{\pi}{4} - F_{23}\right)\vec{i} + F_{13}\sin\frac{\pi}{4}\vec{j}$$

$$F_{13} = k \frac{|q_1||q_3|}{(\sqrt{2}a)^2} = \left(9 \times 10^9 \frac{N \cdot m^2}{C^2}\right) \frac{(5 \times 10^{-6} C)^2}{2(0.1m)^2} = 11.25N$$

$$F_{23} = k \frac{|q_2||q_3|}{a^2} = (9 \times 10^9) \frac{(5 \times 10^{-6})(2.0 \times 10^{-6})}{(0.1)^2} = 9N$$

$$\vec{F}_{q_3} = (7.95 - 9)\vec{t} + 7.95\vec{j} = -1.05\vec{t} + 7.95\vec{j}$$

مثال:

ما هي المسافة الفاصلة بين إلكترونين في الفراغ إذا علمت أن القوة الكهروستاتيكية بينهما تساوي قوة جذب الأرض للإلكترون.

من قانون كولوم تكون القوة الكهروستاتيكية بين إلكترونين في الفراغ هي:

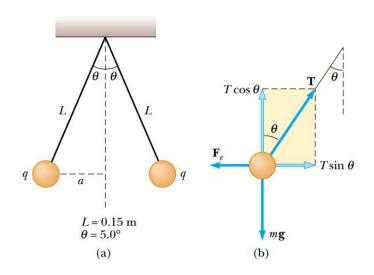
$$F_e = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2}$$

وقوة جذب الأرض للإلكترون هي:

$$F_{g} = mg$$

ومن الفرض فان:

$$F_{e} = F_{g}$$


$$\therefore \frac{1}{4\pi\varepsilon_{0}} \frac{q_{1}q_{2}}{r^{2}} = mg$$

$$9 \times 10^{9} \frac{(1.6 \times 10^{-19})^{2}}{r^{2}} = 9.1 \times 10^{-13} \times 9.8$$

$$\therefore r^2 = 0.258 \times 10^2 m = 25.8m \text{ or } r = 5.1m$$

مثال:

كرتان تحملان شحنتان متماثلتان ، كتلة كل منهما 0.3gm علقتا بخيطين متساويين بطول 15cm، استقرت الكرتان عند الاتزان بحيث صنعت زاوية 50 مع العمود المقام على منتصف المسافة بينهما. احسب شحنة كل منهما.

الحل:

الكرة الموجودة على اليسار مثلاً، تكون في وضع إتزان تحت تأثير ثلاث قوى، قوة الشد T، قوة الجاذبية وقوة التنافر مع الشحنة الاخرى. نحلل القوة كما بالشكل وهنا:

بما ان الكرة فى حالة اتزان كلا من مجموع القوى الافية تساوي صفر وكذلك المجموع الاتجاهي للقوى الرأسية:

$$\sum F_x = T \sin \theta - F_e = 0$$

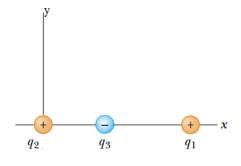
$$F_e = T \sin \theta$$

$$\sum F_y = T \cos \theta - mg = 0$$

$$T = mg/\cos \theta;$$

$$F_e = mg \sin \theta / \cos \theta$$

$$F_e = mg \tan \theta$$

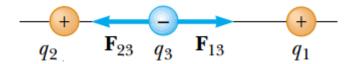

$$= (3.0 \times 10^{-2} \text{ kg}) (9.80 \text{ m/s}^2) \tan(5.0^\circ)$$

$$= 2.6 \times 10^{-2} \text{ N}$$

$$\sin \theta = a/L$$
.
 $a = L \sin \theta = (0.15 \text{ m}) \sin(5.0^\circ) = 0.013 \text{ m}$

$$2a=0.026~\mathrm{m}.$$
 اذن $r=2a=0.026~\mathrm{m}$ وبالتطبيق في قانون كولوم
$$r=2a=0.026~\mathrm{m}$$
 حيث
$$r=2a=0.026~\mathrm{m}$$
 نجد ان
$$|q|^2=\frac{F_e r^2}{k_e}=\frac{(2.6\times 10^{-2}~\mathrm{N})(0.026~\mathrm{m})^2}{8.99\times 10^9~\mathrm{N}\cdot\mathrm{m}^2/\mathrm{C}^2}=1.96\times 10^{-15}~\mathrm{C}^2$$

$$|q|=4.4\times 10^{-8}~\mathrm{C}$$


مثال.

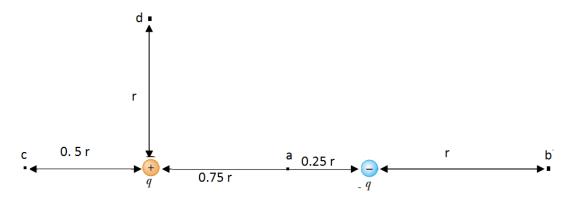
ثلاث شحنات نقطية تقع على المحور السيني كما x=2m و $q_1=15\mu C$ و $q_2=6\mu C$ و و عند $q_2=6\mu C$ و و عند نقطة الاصل و كانت $q_2=6\mu C$ و و قع عند نقطة المنتصف أوجد محصلة القوة الكهربية على $q_2=6\mu C$.

الحل:

حيث ان q3 سالبة وتقع في المنتصف فإن القوتان الناسئتان من الشحنتان الموجبتان ستعملان في عكس الاتجاه ويكون القوة الاكبر في اتجاه الشحنة الاكبر حيث ان المسافة واحدة وعلية يكون

F13>F23

و علية تكون محصلة القوة في اتجاه المحور السيني الموجب.

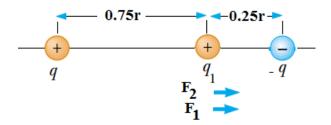

$$F12=9*10^9*15*10^{-6}*5*10^{-6}/(1)^2 i=0.675i N$$

$$F23 = -9*10^9*6*10^{-6}*5*10^{-6}/(1)^2 i = -0.27 i N$$

Fq3=
$$0.675i - 0.27i = 0.405 N$$
 to +ve x-direction

مثال:

شحنتان نفطیتان متساویتان کل منهما q إحداهما موجبة و الأخرى سالبة تفصلهما مسافة مقدار ها r کما هو بالشکل التالي . أحسب القوة المؤثرة على شحنة موجبة ثالثة q_1 إذا وقعت عند النقاط p_1 و p_2 و p_3 و p_4 و p_4 و p_5 و p_5 و p_6 و p_6


ملحوظة: لا يمكن حساب القوة (باستخدام قانون كولوم)عند نقطة الا اذا وجدت شحنة نقطية عند تلك النقطة وكان هناك شحنة آخري على الاقل.

استر اتيجية الحل:

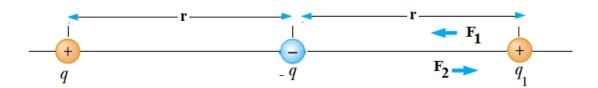
- 1- ننظر في نوع الشحنات ونحدد اتجاه القوة الكهربية بين الشحنه الثالثة وكلاً من الشحنه الاولى والثانية.
 - 2- نحدد المسافات ونهتم بقيم الشحنات ونطبق قانون كولوم مع الاخذ في الاعتبار الوحدات.
 - 3- اذا كان هناك زوايا بين القوي فلابد من التحليل الاتجاهي للقوي على المحور السيني والصادي.
 - 4- نجمع القوي جمع اتجاهى و لابد من التدريب علية.

الحل:

(أ) تحديد متجهات القوي وحساب القوة المؤثرة على الشحنة q1 الواقعة في النقطة a :

القوة ٤٦ قوة التجاذب بين الشحنة السالبة q والشحنة المتأثرة الموجبة q₁ وتتجه نحو الشحنة السالبة.

القوة ج Fوة التنافر بين الشحنة الموجبة q والشحنة المتأثرة الموجبة م وتتجه نحو الشحنة السالبة أيضا. ونلاحظ أن القوتين F₂ و F₂ تعملان في نفس الاتجاه ولذلك يمكن أن نقول أن القوة المحصلة هي عبارة عن مجموع القوتين. تعمل القوتين في اتجاه المحور السيني الموجب


$$F_a = F_1 + F_2$$

$$F_{1} = K \frac{q q_{1}}{r^{2}} = K \frac{q q_{1}}{(0.25 r)^{2}} = 9 \times 10^{9} \frac{0.64 \times 10^{-6} \ 0.32 \times 10^{-6}}{(0.25 \times 0.08)^{2}} = 4.608N$$

$$F_{2} = K \frac{q q_{2}}{r^{2}} = K \frac{0.64 \times 10^{-6} \ 0.32 \times 10^{-6}}{(0.75 \times 0.08)^{2}} = 0.512N$$

$$F_a = F_1 + F_2$$

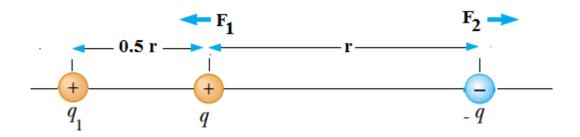
= 4.608+0.512=5.12N in+vex-axis

(ب) حساب القوة المؤثرة على الشحنة q1 الواقعة في النقطة d:

القوة F₁ قوة التجاذب بين الشحنة السالبة q والشحنة المتأثرة الموجبة q₁ وتتجه نحو الشحنة السالبة.

القوة F_2 قوة التنافر بين الشحنة الموجبة q والشحنة المتأثرة الموجبة q_1 وتتجه نحو الشحنة السالبة أيضا. ونلاحظ أن القوتين F_1 و F_2 تعملان في اتجاهين مختلفين ولذلك يمكن أن نقول أن القوة المحصلة هي عبارة عن الفرق بين القوتين. F_1 تكون اكبر من F_2 حيث انها تنتج عن الشحنة القريبة وبالتالي تكون المحصلة في اتجاه المحور السيني السالب

$$F_b = F_2 - F_1$$


$$F_1 = K \frac{q \ q1}{r^2} = 9 \times 10^9 \times \frac{0.64 \times 10^{-6} \times 0.32 \times 10^{-6}}{(8 \times 10^{-2})^2} = 0.288N$$

$$F_2 = K \frac{q \ q_2}{r^2} = K \frac{q \ q_2}{(2 \ r)^2} = K \frac{q \ q_2}{4 \ r^2}$$

$$F_2 = 9 \times 10^9 \times \frac{0.64 \ x 10^{-6} \times 0.32 \ x 10^{-6}}{4 \times (8 \times 10^{-2})^2} = 0.072N$$

$$F_b = F_2 - F_1 = 0.072 - 0.288 = -0.216N$$

(جـ) حساب القوة المؤثرة على الشحنة a1 الواقعة في النقطة c :

القوة F1 قوة التجاذب بين الشحنة السالبة q والشحنة المتأثرة الموجبة q1 وتتجه نحو الشحنة السالبة.

القوة F_2 قوة التنافر بين الشحنة الموجبة q والشحنة المتأثرة الموجبة q_1 وتتجه نحو الشحنة السالبة أيضا. ونلاحظ أن القوتين F_1 و F_2 تعملان في اتجاهين مختلفين ولذلك يمكن أن نقول أن القوة المحصلة هي عبارة عن الفرق بين القوتين.

$$F_{c} = F_{1} - F_{2}$$

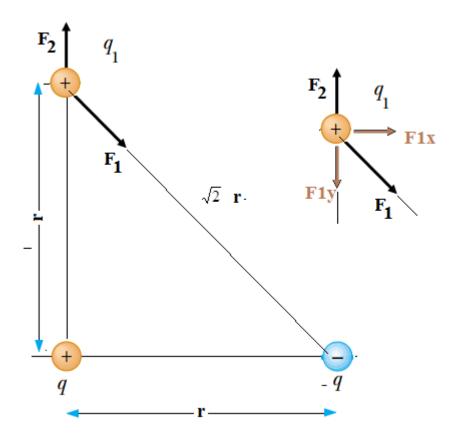
$$F_{1} = K_{e} \frac{q \, q^{1}}{r^{2}} = K \frac{q \, q_{1}}{(1.5 \, r)^{2}} =$$

$$F_{1} = 9 \times 10^{9} \times \frac{0.64 \times 10^{-6} \times 0.32 \times 10^{-6}}{(1.5 \times 8 \times 10^{-2})^{2}} = 0.128N$$

$$F_{2} = K \frac{q q_{2}}{r^{2}} = K \frac{q q_{2}}{(0.5r)^{2}}$$

$$F_{2} = 9 \times 10^{9} \times \frac{0.64 \times 10^{-6} \times 0.32 \times 10^{-6}}{(0.5 \times 8 \times 10^{-2})^{2}} = 1.151N$$

$$F_{c} = F_{1} - F_{2} = 0.128 - 1.151 = -1.024N$$


Another solution

$$F_c = F_1 - F_2 = K \frac{q \ q_1}{r^2} \left(\frac{1}{(1.5)^2} - \frac{1}{(0.5)^2} \right) = 1.024N$$

(د) حساب القوة المؤثرة على الشحنة q1 الواقعة في النقطة d :

في هذا الشكل تكون الشحنة المتأثرة عمودية على الشحنة الموجبة وتكون القوة بينهما F_2 في إنجاة γ الموجبة وبذلك ل تحتاج هذه القوة إلى تحليل. بينما تعمل القوة بين الشحنة المتأثرة والشحنة السالبة F_1 زواية مقدار ها θ ولذلك تحتاج هذه القوة إلى تحليل في الاتجاه χ والاتجاه χ كما هو موضح بالشكل.

نقوم بحساب المسافة بين الشحنة السالبة والشحنة الاختبارية (المتأثرة) من نظرية فيثاغورث وتساوى $r \sqrt{2}$

$$F_{1x} = F_1 \sin \theta = K \frac{q q_1}{\left(r \sqrt{2}\right)^2} \sin 45$$

$$= 9 \times 10^9 \times \frac{0.64 \times 10^{-6} \times 0.32 \times 10^{-6}}{(8 \times 10^{-2} \sqrt{2})^2} \times \sin(45) = 0.102 \, N$$

$$F_{1y} = F_1 \cos \theta = K \frac{q q_1}{\left(r \sqrt{2}\right)^2} \cos 45$$

$$= 9 \times 10^9 \times \frac{0.64 \times 10^{-6} \times 0.32 \times 10^{-6}}{(8 \times 10^{-2} \sqrt{2})^2} \times \cos(45)$$

$$= 0.102 \, N = \frac{\sqrt{2}}{2} \times 9 \times 10^9 \times \frac{0.64 \times 10^{-6} \times 0.32 \times 10^{-6}}{(8 \times 10^{-2})^2} \times \cos(45) = 0.102 \, N$$

$$F_x = F_{1x} = 0.102 \ N$$

 F_{ix} وبذلك يحمل محور x قوة واحدة وهي

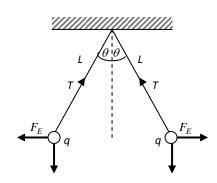
$$F_{2} = K \frac{q \ q_{1}}{r^{2}} = 0.288 \ N$$

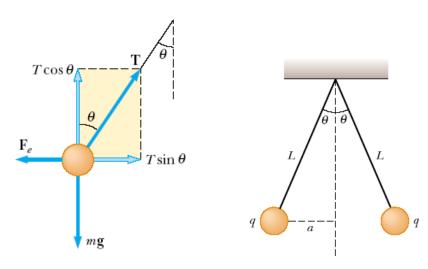
$$F_{y} = F_{2} - F_{1y}$$

$$= 0.288 - 0.102$$

$$= 0.186 \ N$$

وتكون القوة المحصلة المؤثرة على الشحنة عند الوضع d تعطى من العلاقة


$$F_d = \sqrt{F_x^2 + F_y^2}$$
$$= 0.212 N$$


وتعمل زاوية تعطى من العلاقة

$$\tan \phi = \frac{F_y}{F_x} = \frac{0.186}{0.102} = 1.824$$

$$\phi = 61.26^{\circ}$$

<u>مثال</u>

يوضح الشكل السابق مخطط الجسم الحر لإحدى الشحنتين، و بما أن الشحنتين متزنتان اتزاناً ساكناً فإن:

$$F_E = T \sin \theta$$

$$mq = T \cos \theta$$

حيث تمثل T الشد في كل من الخيطين. و بحل المعادلتين السابقتين، و حذف T منهما، ينتج أن:

$$F_E = mg \tan \theta$$

من جهة أخرى، تعطى قوة التنافر بين الشحنتين من قانون كولوم على النحو التالى:

$$F_E = K \frac{q^2}{r^2}$$

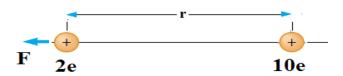
حيث تمثل r في هذه المعادلة المسافة بين الشحنتين، و التي تساوي من الشكل السابق $2L \sin \theta$. و بمساواة المعادلتين السابقتين ببعضهما و التعويض عن r بدلالة L و θ ، نجد أن:

$$\frac{Kq^2}{\left(2L\sin\theta\right)^2} = mg\tan\theta$$

و منها نجد أن:

$$q^2 = \left(\tan\theta \sin^2\theta\right) \frac{4mgL^2}{K}$$

و بالتعويض في هذه المعادلة عن القيم المعطاة، نجد أن:


$$q^{2} = \left(\tan 4^{\circ} \sin^{2} 4^{\circ}\right) \frac{4 \times 1 \times 10^{-2} \times 9.8 \times 1^{2}}{9 \times 10^{9}}$$

أي أن

$$q = 1.218 \times 10^{-7} \text{ C}$$

مثال

احسب قوة التنافر بين شحنة نواة الهليوم (+2e) وشحنة نواة النيون (+ 10 e) إذا كانت المسافة بينهما + 3x10 = + 3x10 = + المسافة بينهما

$$F = K \frac{q_1 q_2}{r^2} = 9 \times 10^9 \frac{(2 \times 1.6 \times 19^{-19}) \times (10 \times 1.6 \times 10^{-19})}{(3 \times 10^{-9})^2}$$
$$= 5.12 \times 10^{-10} N$$